12-12-2016 Seminar Introduction to LLVM compiler framework

Building High-Level Compiler Optimizers and
Code Generators for the Multicore Era

Introduction to LLVM compiler framework

Stefano Cherubin

Politecnico di Milano

12-12-2016

These slides contains material by M. Scandale and E. Speziale

Stefano Cherubin <stefano.cherubin@polimi.it> 1

2-2016 Seminar Introduction to LLVM compiler framework

About the dragon

@ The LLVM logo [1] is a stylized wyvern (mythological creature
often mistaken for a dragon). Dragons have connotations of
power, speed and intelligence, and can also be sleek, elegant, and
modular (err, maybe not).

Stefano Cherubin <stefano.cherubin@polimi.it> 3

12-12-2016 Seminar Introduction to LLVM compiler framework

About the dragon

@ The LLVM logo [1] is a stylized wyvern (mythological creature
often mistaken for a dragon). Dragons have connotations of
power, speed and intelligence, and can also be sleek, elegant, and
modular (err, maybe not).

@ There is a series of compiler books dating back to the 1970s
showing illustrations with dragons and knights [2] [3] [4]

Compilers

Principles, Techniques, & Tools

Principles of Compiler Design

Compilers

Prlnclples Techmques
and Tools

Alfred V. Aho
Monica S. Lam
vi Sethi

Jeffrey D. Ullman

Alired V. Aho
Ravi Sethi ot

Jeffrey D. Ullman

Stefano Cherubin <stefano.cherubin@polimi.it> 3

12-12-2016 Seminar Introduction to LLVM compiler framework

About me

Stefano Cherubin

@ stefano.cherubin@polimi.it

@ 2nd year PhD student @ Politecnico di Milano (ltaly)
@ working on compilers since relatively short time

@ definitely not an experienced knight...

Stefano Cherubin <stefano.cherubin@polimi.it> 4

12-12-2016 Seminar Introduction to LLVM compiler framework

About me

Stefano Cherubin
stefano.cherubin@polimi.it

2nd year PhD student @ Politecnico di Milano (Italy)
working on compilers since relatively short time

definitely not an experienced knight...

...I'm more like a lazy Hobbit

Stefano Cherubin <stefano.cherubin@polimi.it> 4

12-12-2016 Seminar Introduction to LLVM compiler framework

About you

In order to fully understand the content of this course you should have:

knowledge of what a compiler is

proficiency in most common data structures

proficiency in Object-Oriented Programming

@ at least some experience with C++

Stefano Cherubin <stefano.cherubin@polimi.it> 5]

12-12-2016 Seminar Introduction to LLVM compiler framework

About this talk

o Compiler design

o LLVM structure overview
o LLVM-IR language

o LLVM Documentation

o LLVM quick start

Stefano Cherubin <stefano.cherubin@polimi.it> 6

12-12-2016 Seminar Introduction to LLVM compiler framework

Goal of this talk

At the end of this speech you should:

@ understand the LLVM compiler infrastructure

@ be able to read a .l file (LLVM-IR)

@ know where to look for documentation

navigate the LLVM code base

Stefano Cherubin <stefano.cherubin@polimi.it> 7

12-12-2016 Seminar Introduction to LLVM compiler framework

@ Introduction

Stefano Cherubin <stefano

12-12-2016 Seminar Introduction to LLVM compiler framework

Compilers and compilers

Approaching to compilers, we need to understand the difference
between a toy-compiler and production-quality compiler.

Toy Compiler Production-Quality Compiler
@ small code-base @ huge code-base
@ easy doing tiny edits @ difficult performing any kind of
@ impossible doing edits
normal/big edits @ compiler-code extremely
optimized

Key concepts:

@ working with a production-quality compiler is initially hard, but ...

@ ...an huge set of tools for analyzing/transforming/testing code is
provided — toy compilers miss these things!

Stefano Cherubin <stefano.cherubin@polimi.it> 9

16 Seminar Introduction to LLVM compiler framework

LLVM: Low Level Vlrtual Machine

Initially started as a research project at Urbana-Champaign:

@ now intensively used for researches involving compilers

@ key technology for leading industries — AMD, Apple, Intel, NVIDIA

If you are there, then it is your key-technology:
@ open-source compilers: Open64 [5], GCC [6], LLVM [7]
@ LLVM is relatively young — GCC performances are better — but . ..
..it is highly modular, well written, kept clean by developers.

Stefano Cherubin <stefano.cherubin@polimi.it> 10

12-12-2016 Seminar Introduction to LLVM compiler framework

© Compiler organization

Stefano Cherubin <stefano

12-12-2016 Seminar Introduction to LLVM compiler framework

Compiler pipeline

Typically a compiler is a pipeline:

O—Eromnd)—
Fortran |—{ Fortran front-end J
(Fortran)—()

’—> x86 back-end

middle-end |—>«
\—> ARM back-end

There are three main components:
Front-end translate a source file in the intermediate representation
Middle-end analyze intermediate representation, optimize it

Back-end generate target machine assembly from the intermediate
representation

Stefano Cherubin <stefano.cherubin@polimi.it>

12-12-2016 Seminar Introduction to LLVM compiler framework

Compiler pipeline

Internal pipelines

Each component is composed internally by pipelines:

@ simple model of computations — read something, produce
something

@ only needed to specify how to transform input data into output
data

Complexity lies on chaining together stages.

Stefano Cherubin <stefano.cherubin@polimi.it> 13

2-2016 Seminar Introduction to LLVM compiler framework

Compiler pipeline

We will consider only the middle-end: same concepts are valid also for
{front,back}-end.

Technical terms:
Pass a pipeline stage

IR (a.k.a. Intermediate Representation) is the language used
in the middle-end.

The pass manager manages a set of passes:

@ build the compilation pipeline: schedule passes together according
to dependencies.

Dependencies are hints used by the pass manager in order to schedule
passes.

Stefano Cherubin <stefano.cherubin@polimi.it> 14

12-12-2016 Seminar Introduction to LLVM compiler framework

First insights

A compiler is complex:

@ passes are the elementary unit of work
@ pass manager must be advisee about pass chaining

@ pipeline shapes are not fixed — it can change from one compiler
execution to another !

Moreover, compilers must be conservative:

@ apply a transformation only if program semantic is preserved

Compiler algorithms are designed differently w.r.t. standard algorithms!

leg. optimized/not optimized builds, compiler options, ...

Stefano Cherubin <stefano.cherubin@polimi.it> 15

12-12-2016 Seminar Introduction to LLVM compiler framework

Contents

© Algorithm design

Stefano Cherubin <stefano.cherubin@polimi.it> 16

12-12-2016 Seminar Introduction to LLVM compiler framework

Classical Algorithm Design

Dealing with algorithm design, a naive approach is the following:
study the problem

make some example

identify the common case

derive the algorithm for the common case

add handling for corner cases

000000

improve performance optimizing the common case

Weakness of the approach:

@ corner cases — a correct algorithm must consider all the corner
cases!

Stefano Cherubin <stefano.cherubin@polimi.it> 17

12-12-2016 Seminar Introduction to LLVM compiler framework

Compiler Algorithm Design

Be Conservative

Corner cases are difficult to handle:

@ compiler algorithms must be proved to preserve program semantic

@ having a common methodology helps on that

Compiler algorithms are built combining three kind of passes:

@ analysis
@ normalization

@ optimization

We now consider a simple example: loop hoisting.

Stefano Cherubin <stefano.cherubin@polimi.it> 18

12-12-2016 Seminar Introduction to LLVM compiler framework

Loop Hoisting

It is a transformation that:

@ looks for statements (inside the loop) not depending on the loop
state

@ move them outside the loop body

Loop Hoisting — Before Loop Hoisting — After
do { b = c;

a += i; do {

b = c; a += 1i;

it++; i+
} while (i < k); } while (i < k);

Stefano Cherubin <stefano.cherubin@polimi.it>

12-12-2016 Seminar Introduction to LLVM compiler framework

Loop Hoisting

Focus on the Transformation

The transformation is trivial:
@ move “good” statement outside of the loop

This is the optimization pass. It needs to know:

@ which pieces of code are loops
@ which statements are “good” statements

They are analysis passes:

@ detecting loops in the program
@ detecting loop-independent statements

When registering loop hoisting, also declare needed analysis:

@ pipeline is then automatically built: analysis — optimization

Stefano Cherubin <stefano.cherubin@polimi.it> 20

12-12-2016 Seminar Introduction to LLVM compiler framework

Loop Hoisting

Proving Program Semantic Preservation

The proof is trivial:

@ transformation is correct if analysis are correct, but . ..

@ ...usually analysis are built starting from other analysis already
implemented inside the compiler

You have to prove that combining all analysis information gives you a
correct view of the code:

@ analysis information cannot induce optimization passes applying a
transformation not preserving program semantic

Stefano Cherubin <stefano.cherubin@polimi.it> 21

12-12-2016 Seminar Introduction to LLVM compiler framework

Loop Hoisting

More Loops

We have spoken about loops, but which kind of loop?
@ do-while loOps?
@ while loOp?

@ for loops?
We have seen loop hoisting on:

@ do-while lOOpS
What about other kinds of loops?

@ they must be normalized — i.e. transformed to do-while lOOpS
Normalization passes do that:

@ before running loop hoisting, you must tell to the pass manager
that loop normalization must be run before

This allows to recognize more loops, thus potentially improving
optimization impact!

Stefano Cherubin <stefano.cherubin@polimi.it>

)
[N

12-12-2016 Seminar Introduction to LLVM compiler framework

Compiler Algorithm Design

A methodology

You have to:

analyze the problem

make some examples
detect the common case
declare the input format
declare analysis you need
design an optimization pass
proof its correctness

00000000

improve algorithm performance by acting on common case — the
only considered up to now. Please notice that corner cases are not
considered — just do not optimize corner cases

©

improve the effectiveness of the algorithm by adding normalization
passes

Stefano Cherubin <stefano.cherubin@polimi.it> 23

12-12-2016 Seminar Introduction to LLVM compiler framework

Contents

© Inside LLVM

Stefano Cherubin <stefano.cherubin@polimi.it> 24

12-12-2016 Seminar Introduction to LLVM compiler framework

Terminology
Speaking About LLVM IR

LLVM IR comes with 3 different flavours:

assembly human-readable format
bitcode binary on-disk machine-oriented format

in-memory binary in-memory format, used during compilation process

All formats have the same expressiveness!

File extensions:
Al for assembly files
.bc for bitcode files

Stefano Cherubin <stefano.cherubin@polimi.it> 25

12-12-2016 Seminar Introduction to LLVM compiler framework

Tools
C Language Family Front-end

Writing LLVM assembly by hand is unfeasible:
o different front-ends available for LLVM
@ use Clang [8] for the C family

The clang driver is compatible with GCC:

@ =~ same command line options

To generate LLVM IR:
assembly clang -emit-1lvm -S -o out.ll in.c
bitcode clang -emit-1lvm -o out.bc in.c

It can also generate native code starting from LLVM assembly or LLVM
bitcode — like compiling an assembly file with GCC

Stefano Cherubin <stefano.cherubin@polimi.it> 26

12-12-2016 Seminar Introduction to LLVM compiler framework

Tools
Playing with LLVM Passes

LLVM IR can be manipulated using opt:

@ read an input file
@ run specified LLVM passes on it
@ respecting user-provided order

Useful passes:
@ print CFG with opt -view-cfg input.1ll

@ print dominator tree with opt -view-dom input.11

Pass chaining:
@ run memZreg, then view the CFG with
opt -mem2reg -view-cfg input.ll

@ potentially different results using different option order
(phase/stage ordering)

N
N1

Stefano Cherubin <stefano.cherubin@polimi.it>

12-12-2016 Seminar Introduction to LLVM compiler framework

Pass Hierarchy

LLVM provides a lot of passes:
@ try opt -help
For performance reasons there are different kind of passes:

LLVM Passes

Pass

N
[\ \ \ \

CallGraphSCCPass ModulePass FunctionPass LoopPass BasicBlockPass

T

ImmutablePass

Stefano Cherubin <stefano.cherubin@polimi.it> 28

2-2016 Seminar Introduction to LLVM compiler framework

LLVM Passes

Each pass kind visits particular elements of a module:

ImmutablePass compiler configuration — never run
CallGraphSCCPass post-order visit of CallGraph SCCs
ModulePass visit the whole module
FunctionPass visit functions
LoopPass post-order visit of loop nests
BasicBlockPass visit basic blocks

Specializations comes with restrictions:
@ e.g. a FunctionPass cannot add or delete functions

o refer to [9] for accurate description of features and limitations of
each kind of pass

Stefano Cherubin <stefano.cherubin@polimi.it> 29

12-12-2016 Seminar Introduction to LLVM compiler framework

What is Available Inside LLVVM?

LLVM provides passes performing basic transformations:

@ variables promotion
@ loops canonicalization

They can be used to normalize/canonicalize the input:
@ transform into a form analyzable for further passes

Input normalization is essential:

@ keep passes implementation manageable

Stefano Cherubin <stefano.cherubin@polimi.it> 30

12-12-2016 Seminar Introduction to LLVM compiler framework

Contents

© LLVM-IR language

Stefano Cherubin <stefano.cherubin@polimi.it> &

12-12-2016 Seminar Introduction to LLVM compiler framework

LLVM IR

LLVM IR [10] language is RISC-based:

@ instructions operates on variables 2
@ only 1oad and store access memory

@ alloca Used to reserve memory on function stacks

There are also few high level instructions:
e function call — ca11
@ pointer arithmetics — getelementptr

2Virtual registers

Stefano Cherubin <stefano.cherubin@polimi.it> 32

12-12-2016 Seminar Introduction to LLVM compiler framework

LLVM IR

Types & Variables

LLVM IR is strongly typed:

@ e.g. you cannot assign a floating point value to an integer variable
without an explicit cast

Almost everything is typed — e.g.:
functions efact — i32 (i32)
statements %3 = icmp eq i32 %2, 0 — il
A variable can be:

gIobaI @var = common global i32 ®, align 4
function parameter define i32 @fact(i32 %n)

local %2 = load i32, i32* %1, align 4

Local variables are defined by statements

Stefano Cherubin <stefano.cherubin@polimi.it> e8]

12-12-2016 Seminar Introduction to LLVM compiler framework

LLVM IR

Example: factorial

define i32 @fact(i32 %n) {
entry:
%retval = alloca i32, align 4
%n.addr = alloca i32, align 4
store i32 %n, i32* %n.addr, align 4
%0 = load i32, i32* %n.addr, align 4
%cmp = icmp eq i32 %0, O
br il %cmp, label %if.then, label %if.end

if.then:
store i32 1, i32* %retval, align 4
br label %return

if.end:
%1 = load i32, i32* %n.addr, align 4
%2 = load i32, i32* %n.addr, align 4
%sub = sub nsw i32 %2, 1
%call = call i32 @fact(i32 %sub)
%mul = mul nsw i32 %1, %call
store i32 %mul, i32* %retval, align 4
br label %return

return:
%3 = load i32, i32* %retval, align 4
ret i32 %3

}

Stefano Cherubin <stefano.cherubin@polimi.it> 34

12-12-2016 Seminar Introduction to LLVM compiler framework

LLVM IR Language

Static Single Assignment

LLVM IR is SSA-based:
@ every variable is statically assigned exactly once
Statically means that:

@ inside each function
@ for each variable %foo

@ there is only one statement in the form %foo = ...
Static is different from dynamic:

@ a static assignment can be executed more than once

Stefano Cherubin <stefano.cherubin@polimi.it> 5]

12-12-2016 Seminar Introduction to LLVM compiler framework

Static Single Assignment

Examples

Scalar SAXPY

float saxpy(float a, float x, float y) {
return a * x + y;

o
\

Scalar LLVM SAXPY

define float @saxpy(float %a, float %x, float %y) {
%1 = fmul float %a, %x
%2 = fadd float %1, %y
ret float %2

}

Temporary %1 not reused! %2 is used for the second assignment!

Stefano Cherubin <stefano.cherubin@polimi.it> 36

12-12-2016 Seminar Introduction to LLVM compiler framework

Static Single Assignment

Examples

Array SAXPY

void saxpy(float a, float x[4], float y[4], float z[4]) {
for(unsigned i = 0; i < 4; ++i)
z[i] = a * x[i] + y[il;

o
A

Array LLVM SAXPY

for.cond:
%i.0 = phi i32 [0, %entry], [%inc, %for.inc]
%cmp = icmp ult i32 %i.0, 4
br il %cmp, label %for.body, label %for.end

for.inc:
%inc = add i32 %i.0, 1
br label %for.cond

One assignment for loop counter %i.o

Stefano Cherubin <stefano.cherubin@polimi.it>

12-12-2016 Seminar Introduction to LLVM compiler framework

Static Single Assignment

Handling Multiple Assignments

float max(float a, float b) {
return a > b ? a : b;

LLVM Max — Bad

| H-’
A\

%1 = fcmp ogt float %a, %b

br il %1, label %if.then, label %if.else
if.then:

%2 = %a

br label %if.end
if.else:

%2 = %b

br label %if.end
if.end:

ret float %2

A\

Why is it bad?

Stefano Cherubin <stefano.cherubin@polimi.it> 38

12-12-2016 Seminar Introduction to LLVM compiler framework

Static Single Assignment

Use phi to Avoid Troubles

The %2 variable must be statically set once

LLVM Max

%1 = fcmp ogt float %a, %b
br i1 %1, label %if.then, label %if.end
if.then:
br label %if.end
if.else:
br label %if.end
if.end:
%2 = phi float [%a, %if.then], [%b, %if.else 1]
ret float %2

The phi instruction is a conditional move:

o it takes (variable;, label;) pairs
e if coming from predecessor identified by /abel;, its value is variable;

Stefano Cherubin <stefano.cherubin@polimi.it> 39

12-12-2016 Seminar Introduction to LLVM compiler framework

Static Single Assignment

Definition and Uses

Each SSA variable is set only once:

@ variable definition

Each SSA variable can be used by multiple instructions:

@ variable uses

Algorithms and technical language abuse of these terms.

Let %foo be a variable. If %foo definition has not side-effects, and no uses,
dead-code elimination can be efficiently performed by erasing %foo
definition from the CFG.

Stefano Cherubin <stefano.cherubin@polimi.it> 40

12-12-2016 Seminar

Static Single Assignment

Introduction to LLVM compiler framework

Rationale

Old compilers are not SSA-based:

@ putting input into SSA-form is expensive
@ cost must be amortized

New compilers are SSA-based:
@ SSA easier to work with

@ SSA-based analysis/optimizations faster

All modern compilers are SSA-based:

@ exception are old version of the HotSpot Client compiler

Stefano Cherubin <stefano.cherubin@polimi.it>

12-12-2016 Seminar Introduction to LLVM compiler framework

@ Documentation

Stefano Cherubin <stefano

12-12-2016 Seminar Introduction to LLVM compiler framework

LLVM official documentation

1lvm.org/docs

Stefano Cherubin <stefano.cherubin@polimi.it> 43

llvm.org/docs

1 016 Seminar Introduction to LLVM compiler framework

A lot of documentation...

11lvm.org/docs mentions:
@ 5 references about Design & Overview
@ 19 references about User Guides
@ 12 references about Programming Documentation

32 references about Subsystem Documentation

5 Mailing Lists

o
@ 7 references about Development Process Documentation
o
@ 5 IRC bots

Most of the above references are OUT-OF-DATE.

You probably need documentation about the documentation itself.

Stefano Cherubin <stefano.cherubin@polimi.it> 44

llvm.org/docs

12-12-2016 Seminar Introduction to LLVM compiler framework

Essential documentation

Intro to LLVM [11] gives a quick and clear introduction to the compiler
infrastructure. It is mostly up-to-date.3

Writing an LLVM pass [9] explains step by step how to implement a
Pass for those who never did anything like that.

Doxygen [12] The best code documentation is the code itself.
Sometimes the generated doxygen documentation is
enough. It also contains links to the web version of the
source code. It is always up-to-date.

llvm-dev Mailing List. Last resource. ask other developers.
Warning: 24/7 many people are posting in this ML.

3at the time | am writing

Stefano Cherubin <stefano.cherubin@polimi.it> 45

12-12-2016 Seminar Introduction to LLVM compiler framework

Contents

@ Using the LLVM framework: quick start

Stefano Cherubin <stefano.cherubin@polimi.it> 46

12-12-2016 Seminar Introduction to LLVM compiler framework

Commands

[lvm-as LLVM assembler
llvm-dis LLVM disassembler
opt LLVM optimizer
llc LLVM static compiler
lli directly execute programs from LLVM bitcode
[lvm-link LLVM bitcode linker
[lvm-lib LLVM lib.exe compatible library tool

llvm-nm list LLVM bitcode and object file's symbol table
[lvm-config Print LLVM compilation options
[lvm-stress generate random .l files

[lvm-dwarfdump print contents of DWARF sections

For a complete reference, see LLVM command gquide *

“http://1lvm. org/docs/CommandGuide/index.html

Stefano Cherubin <stefano.cherubin@polimi.it> 47

http://llvm.org/docs/CommandGuide/index.html

12-12-

.c source
L, gcec / clang
.bc / .11
L»llvm—link

L».bc / .11
L> opt

2

016 Seminar Introduction to LLVM compiler framework

libWhatever.a

L».bc / .11
L> llc

Stefano Cherubin <stefano.cherubin@polimi.it>

L. s
L> llvm-mc / as
.0 dynLibWhatever.o

L* 1d

L> executable

2-2016 Seminar Introduction to LLVM compiler framework

Writing a LLVM pass

There are a lot of tutorials available:

o Official developer guide
1lvm.org/docs/WritingAnLLVMPass

@ Out-of-source pass
github.com/quarkslab/llvm-dev-meeting-tutorial-2015

Stefano Cherubin <stefano.cherubin@polimi.it> 49

http://llvm.org/docs/WritingAnLLVMPass.html
llvm.org/docs/WritingAnLLVMPass
https://github.com/quarkslab/llvm-dev-meeting-tutorial-2015
github.com/quarkslab/llvm-dev-meeting-tutorial-2015

2-2016 Seminar Introduction to LLVM compiler framework

Testing

LLVM has an internal testing infrastructure. ® Please use it.

[lvm-lit LLVM Integrated Tester

@ Forge a proper LLVM-IR input file (.II) for your test case
@ Instrument it with 1it script comments

© Run 1it on your test
o llvm-1it /llvm/test/myTests/singleTest.1ll

run a single test
e llvm-1lit /llvm/test/myTests
run the test suite (folder)

@ Run 1it on the LLVM test suite (regression testing)

To submit a bug report to LLVM developers you will be asked to write a
lit test case that highlights the bug.

Shttp://1lvm. org/docs/TestingGuide.html

Stefano Cherubin <stefano.cherubin@polimi.it>

http://llvm.org/docs/TestingGuide.html

12-12-2016 Seminar Introduction to LLVM compiler framework

@ Conclusions

Stefano Cherubin <stefano bin@polimi.it>

12-12-2016 Seminar Introduction to LLVM compiler framework

Understanding LLVM

LLVM s not a compiller.

Stefano Cherubin <stefano.cherubin@polimi.it>

12-12-2016 Seminar Introduction to LLVM compiler framework

Understanding LLVM

LLVM s not a compiller.

LLVM is a collection of components
which is useful to build a compiler.

Stefano Cherubin <stefano.cherubin@polimi.it>

12-12-2016 Seminar Introduction to LLVM compiler framework

at LLVM is made of

@ C++ libraries

e src/include/1lvm/...
e src/lib/...

@ small application (tools)

@ src/tools/...
e src/utils/...

You can find binaries of them in the installation directory under
root/bin/...

Stefano Cherubin <stefano.cherubin@polimi.it> G5

12-12-2016 Seminar Introduction to LLVM compiler framework

clang

@ clang is a compiler based on LLVM.

@ |t compiles all major C-like languages

@ It can be added as a tool in the LLVM framework but must be
manually cloned in the tool directory

© cd src/tools
@ git clone http://1lvm.org/git/clang

@ You can easily see on a production quality compiler the impact of
changes you made on your local copy of LLVM

Stefano Cherubin <stefano.cherubin@polimi.it> 54

12-12-2016 Seminar Introduction to LLVM compiler framework

Conclusions

LLVM is a production-quality compiler framework:
= impossible knowing all details

But:
@ is well organized

@ if you known compilers theory is “easy” finding what you need inside
sources

Please take into account C++:
@ basic skills required

Stefano Cherubin <stefano.cherubin@polimi.it> [55]

12-12-2016 Seminar Introduction to LLVM compiler framework

Bibliography |

@ Apple Inc.
Llvm logo.

http://llvm.org/Logo.html.

@ Alfred V. Aho and Jeffrey D. Ullman.
Principles of Compiler Design (Addison-Wesley Series in Computer
Science and Information Processing).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1977.

@ Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1986.

Stefano Cherubin <stefano.cherubin@polimi.it> 56

12-12-2016 Seminar Introduction to LLVM compiler framework

Bibliography |l

@ Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2Nd Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2006.

[AMD.
Openb4.
http://developer.amd.com /tools-and-sdks/cpu-development /x86-
open64-compiler-suite.

3 GNu.
GNU Compiler Collection.
http://gcc.gnu.org.

@ University of lllinois at Urbana-Champaign.
Low Level Virtual Machine.
http://www.llvm.org.

Stefano Cherubin <stefano.cherubin@polimi.it> 57

12-12-2016 Seminar Introduction to LLVM compiler framework

Bibliography Il

@ University of lllinois at Urbana-Champaign.
Clang: a C language family frontend for LLVM.
http://clang.llvm.org.

[§ Chris Lattner and Jim Laskey.
Writing an LLVM Pass.
http://llvm.org/docs/WritingAnLLVMPass.html.

@ Chris Lattner and Vikram Adve.
LLVM Language Reference Manual.
http://llvm.org/docs/LangRef.html.

@ Chris Lattner.
Intro to LLVM.
http://www.aosabook.org/en/llvm.html.

Stefano Cherubin <stefano.cherubin@polimi.it> 58

12-12-2016 Seminar Introduction to LLVM compiler framework

Bibliography IV

3 LLVM Community.
Doxygen annotations.
http://llvm.org/doxygen/annotated.html.

[§ Think Geek.
Relaxing with a pipe full.
http://www.thinkgeek.com/product/ee7f/?i=14556.

@ Linus Torvalds.
Re: SCO: "thread creation is about a thousand times faster than
onnative.
https://lkml.org/lkm|/2000/8/25/132.

@ Bruce Eckel.
Thinking in C++ — Volume One: Introduction to Standard C++.
http://mindview.net/Books/TICPP /ThinkingInCPP2e.html.

Stefano Cherubin <stefano.cherubin@polimi.it> 59

12-12-2016 Seminar Introduction to LLVM compiler framework

Bibliography V

[Bruce Eckel and Chuck Allison.
Thinking in C++ — Volume Two: Practical Programming.
http://mindview.net/Books/TICPP /ThinkingInCPP2e.html.

[John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya Lattner.
LLVM Testing Infrastructure Guide.
http://llvm.org/docs/ TestingGuide.html.

3 LLVM Community.
LLVM Coding Standards.
http://llvm.org/docs/CodingStandards.html.

[LLVM Community.
LLVM Passes.
http://llvm.org/docs/Passes.html.

Stefano Cherubin <stefano.cherubin@polimi.it> 60

2-2016 Seminar Introduction to LLVM compiler framework

Bibliography VI

[LLVM Community.
Autovectorization in LLVM.
http://llvm.org/docs/Vectorizers.html.

[§ LLVM Community.
LLVM Programmer’s Manual.
http://llvm.org/docs/ProgrammersManual.html.

@ Ettore Speziale.
Compiler Optimization and Transformation Passes.
https://github.com/speziale-ettore/COT Passes.

@ Scott Chacon.
Pro Git.
http://git-scm.com/book.

Stefano Cherubin <stefano.cherubin@polimi.it> 61

	Introduction
	Compiler organization
	Algorithm design
	Inside LLVM
	LLVM-IR language
	Documentation
	Using the LLVM framework: quick start
	Conclusions

